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Abstract

When recrystallized from DMF and p-xylene, cavitand tetracarboxylic acid 1 self-assembles into a wave-ladder
type of one-dimensional hydrogen-bonded network. The three-dimensional packing structure consists of huge
chambers, each of which is filled with one molecule of p-xylene and five molecules of DMF. © 1999 Elsevier
Science Ltd. All rights reserved.
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Calix[4]resorcinarenes and their cavitands are bowl-shaped macrocycles and have attracted considera-
ble attention in host-guest and supramolecular chemistries as artificial receptors and building blocks for
molecular containers.!~> Supramolecular approaches to self-assembly of molecular solids have proved to
be reliable tools to realize a variety of hydrogen-bonded networks having large cavities and clathrates.*6
Macrocycles bearing multiple hydrogen bonding sites have been reported as potential candidates in order
to prevent interpenetrations of porous networks.” However, the utility of cavitand family directed towards
hydrogen-bonded polymeric networks has so far not been intensively studied.®° Herein we report the
one-dimensional hydrogen-bonded network in the solid state of calix[4]resorcinarene cavitand 1 having
four carboxy groups at the upper rim, the packing structure of which affords huge chambers.

Cavitand tetracarboxylic acid 1'* has very low solubility in CHCl3 due to self-aggregation. Slow dif-
fusion of p-xylene into a solution of 1 in DMF gave single crystals composed of 1:p-xylene:DMF=1:1:5
which were suitable for X-ray diffraction analysis.!l"!2 The molecular structure of the adduct is shown
in Fig. 1. Cavitand 1 has C,, symmetry, and the dihedral angles between the carboxy groups and the
aromatic rings are 67.8 and 77.7° probably due to the electronic repulsion between the oxygen atoms
of carboxy and ether moieties. p-Xylene is accommodated in the macrocyclic cavity of 1 via CH---O
and CH-Tt interactions,*!3 where the distances between the aromatic carbon of p-xylene and the acid
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Figure 1. (a) X-Ray molecular structure of 1 with p-xylene and hydrogen-bonded DMF, and (b) hydrogen bonding motif of
two molecules of 1 and DMF. Hydrogen-bonded interactions are shown as broken lines. Non-hydrogen-bonded DMF and all
hydrogen atoms are omitted for clarity

carbonyl oxygen of 1 and between the methyl carbon of p-xylene and the center of resorcinol moiety
of 1 are 3.36 and 3.65 A, respectively. Two of five included DMF molecules hydrogen bond to alternate
carboxy groups of 1, where the O- - -O distance is 2.53 A. The other three DMF are highly disordered and
are included in the void space of the crystal lattice (vide infra). The carboxy groups of 1 intermolecularly
hydrogen bond to each other by a single hydrogen bonding motif as shown in Fig. 1b, where the O---O
distance is 2.72 A. Thus, neighboring molecules of 1 associate with each other via a two-point hydrogen
bonding contact in a head-to-head staggered fashion.

As shown in Fig. 2, this hydrogen bonding pattern affords a wave-ladder type of one-dimensional
hydrogen-bonded network of the cavitands (tape structure) parallel to the ¢ axis so as to give deep grooves
parallel to the b axis. Fig. 3 shows the three-dimensional packing arrangements of three molecular tape
types 1, 2 and 3, i.e. (-al-bl-al-), (-a2-b2-a2-) and (-a3-b3-a3-), respectively. These tapes are parallel

Figure 2. View of a one-dimensional hydrogen-bonded network (an individual tape) of 1 parallel to the a axis. Hydrogen-bonded
interactions are shown as broken lines. DMF molecules are omitted for clarity
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Figure 3. Packing diagrams of tapes of 1: (a) front view parallel to the a axis, (b) side view parallel to the ¢ axis, and (c) top
view parallel to the b axis. Hydrogen-bonded interactions are shown as broken lines. All guests are omitted for clarity

to the ¢ axis without any molecular translation (Fig. 3a). This generates channels of ca. 6.2x8.1 Ain
cross-section running parallel to the a axis. A view down the c axis of the above arrangement shows the
relative openness of the lattice (Fig. 3b). The tapes line up parallel to the a axis with a (tape center)-to-
(tape center) distance of 15.50 A. The tapes (-al-bl-al-) and (-a3-b3-a3-) line up parallel to the bc plane
separated by a center-to-center distance of 35.99 A. In contrast, with respect to tapes 1 and 3, the tapes 2
are translated by 7.75 and 18.00 A along the a and b axes, respectively. This packing of the tape motifs
generates channels of ca. 5.4X11.4 A in cross-section running parallel to the ¢ axis (Fig. 3b).

Hence, in three-dimension, the individual chambers present in the lattice are ca. 5.4X36.0x6.2 Ain
size. A chamber has a box-like cavity formed by four PhACH,CH,- groups of a cavitand as its base (e.g.
a3) and the macrocyclic cavity of another cavitand as its ceiling (e.g. al), and has the side of a cavitand
in the middle of two of its sides (e.g. a2 on the side parallel to the bc plane) and a bl type molecule on
each of the other two sides (e.g. parallel to the ab plane). Furthermore, these chambers are linked by a
channel parallel to the b axis (Fig. 3¢); and, the (al-a3) and (b1-b3) type chambers, which are related
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by inversion, are linked by a wave-like passage parallel to the ¢ axis. Each chamber is filled with one
p-xylene, two hydrogen-bonded DMF, and three disordered non-hydrogen-bonded DMF. The packing
coefficient and the pore size of cavitand 1 in the crystals are only 43% of the total volume of the unit cell
and 0.66 mL g~! with respect to the volume of empty space per gram of 1, respectively.>?

In summary, we have demonstrated the utility of cavitand tetracarboxylic acid 1 for the formation
of a wave-ladder type of one-dimensional hydrogen-bonded network, whose packing arrangement
affords a very porous structure. Applications of 1 as building blocks to a coordination network and a
multicomponent hydrogen-bonded molecular capsule are currently underway in our laboratory.
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